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Reaction of SOz solutions of Tic14 with benzene and durene led to the isolation at -60°C of structurally defined very 
la bi I e corn plexes, [(Ti C14)2( o-OSO)~(  C6R6)2] containing a bi p h i I ic SOz. 

The acid-base interaction between the strong Lewis acid 
TiC141 and S022 is assumed to exist in the absence of any 
competing solvent interaction, i .e.  in liquid S02. The structure 
of the resulting very labile system seems almost impossible to 
determine. We found, however, that the addition of arenes to 
an SO2 solution of TiC14 caused a significant change of the 
colour from very pale yellow to yellow (benzene) and deep red 
(durene). By cooling the solution to -60°C compounds (1) 
and (2) crystallized in significant amounts. 

liquid SO2 
2 TiC14 + 2 C6R6 - [(TiC14)2(S02)2(C6H2R&] 

-60 "C 
(1) R = H 
(2) & = 1,2,4,6-Me4 

Complexes (1) and (2) can be handled only in liquid SO2 at 
-60°C. On increasing the temperature to -30°C they 
dissolve. We were able to transfer crystals of (1) and (2) at 
-60 "C from the liquid SO2 to a diffractometer and to collect 
X-ray data at - 103 "C. We expected from the X-ray analysis 
an answer to the question of the nature of the labile and weak 
interactions in these crystals, which are a sort of frozen 
solution. A picture of (1) is given in Figure 1 .f The structure is 
a centrosymmetric dimer containing six-co-ordinate titanium 
atoms bridged by two chlorine atoms. Similar dimeric adducts 
have been observed between Tic14 and oxygen donor 
monodentate ligands.1 Sulphur dioxide is 0-0 bonded, as 
expected for an oxophilic metal, with a rather long Ti-0 bond 

7 Crystal data for (1): C6H6Cl4O2STi, M = 331.9, monoclinic, space 
group P2&, a = 8.9628(8), b = 10.411(1), c = 13.300(1) A, p = 
104.355(7)", U = 1202.6 2) A3, 2 = 4, D, = 1.83 g cm-3, Mo-K, 
radiation (A = 0.71069 8, ), p(Mo-K,) = 17.4 cm-1; 1436 unique 
observed structure amplitudes [ I  > 30(1)] collected at 170 K on a 
Nicolet R3m diffractometer in the range 6 < 28 < 57". The structure 
was solved using direct methods; the model converged to R = R, = 
0.047. No attempt to locate hydrogen atoms was made. All 
calculations were carried out using SHELX 76. Atomic co-ordinates, 
bond lengths and angles, and thermal parameters have been deposited 
at the Cambridge Crystallographic Data Centre. See Notice to 
Authors, Issue No, 1. 

distance [2.179(3) AI.193 The 0-0 bonding mode is rare in 
transition metal chemistry, an example being [trans- 
{ (S02)2Mn(OPPh3)4} 12] .4 More examples are, however, 
known in main group chemistry, e .g .  [FSSb(OSO)].s 

The structural parameters of SO2 are only slightly affected 
by the interaction with the metal. The S-0 bond distances 
[S-0(1), 1.459(4), S-0(2), 1.403(5) A] and the 0-S-0 angle 
[117.0(2)"] are very close to those in free SO2 (S-0, 1.43 A; 
0-S-0, 119.5").6 We believe, however, that a significant 
stabilization to the system comes from the interaction between 
SO2 and the arene ring. Sulphur interacts with the arene ring 
which is almost perpendicular to the SO2 plane ( S l O )  but at a 
rather long distance [3.20(1) A]. The shortest S-C observed 

Figure 1. An ORTEP drawing of complex (1). Bond lengths (A) and 
angles ("): Ti-Cl(1) 2.217(1), Ti-Cl(2) 2.195(2), Ti-Cl(3) 2.200(2), 
Ti-Cl(4) 2.462(2), Ti-C1(4*) 2.460(2), Ti-O(1) 2.179(3), S-0(1) 
1.459(4), S-0(2) 1.403(5), O(l)-S-O(2) 117.0(2). The shortest S-C 
distance is 3.06(1) A, while the perpendicular distance from S to the 
C ~ H ~  ring is 3.20(1) A. Symmetry operation: * corresponds to 1 - x,  
- y ,  - 2 .  
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interactions are at 3.06(1) [ S  - * C(2)] and 3.07(1) 8, [ S  - - - 
C(3)]. The S - - arene interaction is very significant and the 
benzene is not present as a lattice solvent. In order to prove 
this we used a substituted benzene, durene. Reaction (1) led 
to the same kind of compound, as proved by a preliminary 
X-ray analysis on (2).7 If this is -a  case of an authentic 
sulphur-arene interaction, complexes (1) and (2) should be 
considered as charge-transfer complexes formed between the 
electrophilic activated SO;! and the electron-rich arene. A 
reasonable number of 1 : 1 charge transfer complexes between 
amines and sulphur dioxide have been characterized ade- 
quately both in gas and in condensed phases.8 Sulphur dioxide 
in complexes (1) and (2) experiences a sort of bifunctional 
interaction sitting in the middle of an acidic and a basic site. In 
addition, the Ti-S02-arene fragment may represent a struc- 
tural model for the metal-assisted addition of an electrophile 
to benzene. 

Other small molecules like carbon dioxide may undergo the 
same sort of electrophile activation. X-Ray analysis of 
complexes (1) and (2) has allowed us to inspect precisely the 
first and second co-ordination sphere in solution of a very 
labile species like the Lewis acid TiC14. Being able to freeze 
such weak interactions we have recently been able to identify 
TiC14-arene complexes.9 In the presence of SO2 as a solvent, 
Tic14 prefers to interact with the oxygen. In addition, 
attempted reaction of Tic& solutions in benzene with SO2 did 
not give any results. 
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